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Figure 1. 4RC (pronounced “ARC”) enables unified and complete 4D Reconstruction via Conditional querying from monocular videos in
a single feed-forward pass. It jointly recovers camera poses and dense per-frame geometry, while supporting flexible querying of dense
3D motion from arbitrary source frames to any target timestamp.

Abstract
We present 4RC, a unified feed-forward frame-
work for 4D reconstruction from monocular
videos. Unlike existing methods that typically
decouple motion from geometry or produce lim-
ited 4D attributes, such as sparse trajectories
or two-view scene flow, 4RC learns a holis-
tic 4D representation that jointly captures dense
scene geometry and motion dynamics. At its
core, 4RC introduces a novel encode-once, query-
anywhere and anytime paradigm: a transformer
backbone encodes the entire video into a com-
pact spatio-temporal latent space, from which a
conditional decoder can efficiently query 3D ge-
ometry and motion for any query frame at any
target timestamp. To facilitate learning, we rep-
resent per-view 4D attributes in a minimally fac-
torized form, decomposing them into base geom-
etry and time-dependent relative motion. Exten-
sive experiments demonstrate that 4RC outper-
forms prior and concurrent methods across a wide
range of 4D reconstruction tasks. Project Page:
https://yihangluo.com/projects/4RC/.
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1. Introduction
3D reconstruction has seen remarkable progress over
the past decades. Classical geometric pipelines such as
Structure-from-Motion (SfM) (Schönberger & Frahm, 2016)
and Multi-View Stereo (MVS) (Yao et al., 2018; 2019;
Schönberger et al., 2016) established a solid foundation.
More recently, learning-based approaches, exemplified by
DUSt3R-like pointmap predictor (Wang et al., 2024b; Leroy
et al., 2024; Wang et al., 2025b;a;d; Lin et al., 2025; Lan
et al., 2026) have enabled direct feed-forward inference of
dense 3D geometry, advancing general-purpose 3D percep-
tion in terms of efficiency, scalability, and generalization.

Despite this progress, existing approaches largely focus
on static geometry, while real-world scenes are inherently
dynamic. A truly general visual perception system must
therefore reason not only about 3D structure, but also about
how the scene evolves over time. This motivates the task
of 4D reconstruction, which aims to jointly model 3D ge-
ometry and motion. Such a representation is fundamental
for applications ranging from video synthesis (Gu et al.,
2025; Wu et al., 2024; Lee et al., 2025b) and scene under-
standing to robotics (Lee et al., 2025a; Huang et al., 2026),
where reasoning about object trajectories, deformations, and
interactions is essential.

Existing approaches to 4D reconstruction, however, remain
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fragmented and limited in flexibility. A common strat-
egy decomposes the problem into sequential subtasks, typi-
cally separating motion estimation from 3D reconstruction.
For example, SpatialTracker (Xiao et al., 2024; 2025) per-
forms reconstruction and tracking in a staged manner, re-
lying on iterative refinement, and producing only sparse
3D trajectories. MonST3R (Zhang et al., 2025c) further
requires post-hoc optimization to establish correspondences
across time. Although recent feed-forward methods such as
ST4RTrack (Feng et al., 2025) and Dynamic Point Map (Su-
car et al., 2025) pioneer direct 4D prediction, they are
restricted to pairwise views and thus struggle to model
long-term and complex motion. Concurrently, TraceAny-
thing (Liu et al., 2025) represents motion using Bézier
curves, enabling long-range 3D trajectory tracking, but of-
ten at a cost of reduced geometry quality. Any4D (Karhade
et al., 2025) supports feed-forward 3D reconstruction, but
only predicts scene flow for the first frame and is unable to
model 3D motion for the remaining frames. V-DPM (Sucar
et al., 2026) extends VGGT to 4D, but suffers from slow
inference and limited flexibility at inference.

Motivated by these limitations, we investigate whether a
unified, feed-forward model can enable complete and flexi-
ble 4D prediction. In this work, we propose 4RC, a unified
feed-forward approach for 4D reconstruction from monocu-
lar videos. Unlike previous approaches that require multiple
stages, 4RC learns a holistic and compact 4D representa-
tion that jointly encodes scene geometry and motion across
the entire video sequence. This representation serves as
a centralized 4D latent from which geometry and motion
can be efficiently queried and decoded. Instead of directly
reconstructing a full 3D point cloud for each frame at each
timestamp, we adopt a compact factorized output formula-
tion. Specifically, we represent each frame with a viewpoint-
invariant base geometry together with time-dependent rela-
tive motion, parameterized as 3D displacements. By query-
ing the model at different timestamps, 4RC can recover both
geometry and motion information, such as point trajectories
between any frame and any target time. This design enables
both flexible and efficient 4D reconstruction.

Our contributions can be summarized as follows:

• A unified feed-forward transformer framework for 4D
reconstruction from monocular videos, which jointly
models 3D geometry and motion within a single net-
work, eliminating the need for auxiliary estimators or
per-scene optimization.

• An encode-once, query-anywhere and anytime
paradigm built upon a compact 4D latent represen-
tation. This allows our conditional decoder to flexibly
retrieve dense 3D geometry and motion for arbitrary
query frames at any target timestamp.

• A minimally factorized 4D representation that decom-
poses each frame into a viewpoint-invariant base ge-
ometry and time-dependent relative motion, enabling
unified and flexible reconstruction of dynamic scenes.

Extensive experiments demonstrate that 4RC achieves com-
petitive performance on standard benchmarks across a wide
range of 3D and 4D reconstruction tasks, including camera
pose estimation, video depth prediction, point cloud recon-
struction, 3D point tracking, and dense motion modeling.

2. Related Work
Feed-forward 3D Reconstruction. Reconstructing 3D
geometry from 2D images is a long-standing prob-
lem in computer vision. Traditional pipelines such as
SfM (Schönberger & Frahm, 2016) and MVS (Schönberger
et al., 2016; Yao et al., 2018; 2019) recover camera parame-
ters and dense geometry through multi-stage optimization,
achieving strong performance but at high computational
cost. Recent work has shifted toward feed-forward 3D re-
construction, aiming to replace these complex pipelines with
a single neural network that directly predicts 3D attributes.
DUSt3R (Wang et al., 2024b) demonstrates that dense stereo
reconstruction can be achieved in one forward pass, while
VGGT (Wang et al., 2025a) further unifies camera pose
estimation and depth prediction across multiple views us-
ing a transformer backbone. These methods highlight that,
given sufficient data and model capacity, feed-forward ar-
chitectures can effectively solve static 3D reconstruction.
Extensions to dynamic settings, such as MonST3R (Zhang
et al., 2025c), Pi3 (Wang et al., 2025d), DA3 (Lin et al.,
2025) and related approaches (Wang et al., 2025b; Lan et al.,
2026), jointly estimate camera parameters and per-frame
geometry from dynamic data. Despite operating on dynamic
scenes, these methods only reconstruct geometry for each
view and thus require separate pipelines to explicitly model
3D motion or temporal correspondence.

Point Tracking. Modeling motion over time has tradition-
ally been studied through optical flow (Sun et al., 2010)
and point tracking (Harley et al., 2022). Optical flow meth-
ods (Sun et al., 2018; Hui et al., 2018; Teed & Deng, 2020)
estimate dense pixel-wise displacements between adjacent
frames. These methods are typically limited to short tempo-
ral windows and often suffer from drift errors when applied
to long video sequences (Zhou et al., 2023). To address
long-range correspondence, 2D point tracking methods aim
to track sparse points across entire videos. PIPs (Harley
et al., 2022) introduced a deep tracking framework for
point tracking, followed by TAP-Net (Doersch et al., 2022),
TAPIR (Doersch et al., 2023), and CoTracker (Karaev et al.,
2023a), which rely on correlation-based matching and itera-
tive updates to propagate tracks over time. These approaches
operate purely in 2D and typically depend on carefully de-
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signed matching and update mechanisms. Recent 3D point
tracking approaches extend this paradigm by decoupling
geometry reconstruction from motion modeling. Spatial-
Tracker (Xiao et al., 2024), and subsequent methods (Ngo
et al., 2024; Xiao et al., 2025; Zhang et al., 2025a) com-
bine a pre-trained depth estimator with a lifted 2D tracking
pipeline (Karaev et al., 2023a) to operate in 3D. Despite
enabling 3D tracking, their multi-stage pipelines remain
limited in efficiency and flexibility, and they do not learn
a unified spatiotemporal representation. In contrast, 4RC
directly models dense geometry and motion jointly within a
unified feed-forward framework, without decoupled stages
or tracking heuristics.

4D Reconstruction. The goal of 4D reconstruction is to
recover a representation that captures both the 3D struc-
ture of a scene and how it evolves over time. Early meth-
ods (Wang et al., 2023a; 2024a; Lei et al., 2024; Wang
et al., 2025c) typically formulate this problem as test-time
optimization, which can produce high-quality results but
requires costly per-scene optimization. Recent efforts have
gradually shifted toward feed-forward formulations of 4D
reconstruction. St4RTrack (Feng et al., 2025) predicts point
maps for pairs of views, jointly encoding static geometry
and dynamic motion; however, its pairwise formulation
inherently limits the temporal range of the reconstruction.
We also acknowledge several recent concurrent works that
explore feed-forward formulations for 4D reconstruction.
TraceAnything (Liu et al., 2025) represents scenes using
continuous trajectory fields parameterized by Bézier curves.
Although this formulation enables smooth and long-range
motion modeling, it often struggles to represent complex or
high-frequency dynamics and may compromise geometric
accuracy. Any4D (Karhade et al., 2025) jointly predicts
scene flow and 3D geometry from a canonical reference
view, but lacks the flexibility to infer motion originating
from arbitrary viewpoints. Similarly, V-DPM (Sucar et al.,
2026) extends VGGT to dynamic settings, but relies on an in-
flexible decoding scheme that aggregates information from
all views, leading to high computational costs. Concurrently,
D4RT (Zhang et al., 2025b) introduces a Perceiver-like (Jae-
gle et al., 2021) model for unified 2D and 3D point tracking.
While demonstrating strong performance and supporting
flexible spatial-temporal point queries, its design is primarily
focused on per-point tracking rather than dense, frame-level
4D reconstruction. In contrast, our method, 4RC, employs
a flexible query-based decoder that efficiently recovers com-
plete and dense 4D attributes for any view at any timestamp,
without expensive per-point computation.

3. Method

Our goal is to develop a unified and feed-forward model,
4RC, that takes a monocular video as input and reconstructs

the full underlying 4D attributes of the scene. The core of
our approach lies in encoding the entire video sequence into
a compact 4D representation, which can then be queried
on-demand to decode the geometry and motion of any query
frame at any target timestamp, as illustrated in Figure 2.

3.1. Problem Formulation

Given a monocular video sequence V = {Ii}Ni=1, where
Ii ∈ RH×W×3 denotes the RGB frame captured at times-
tamp ti and N is the total number of frames, our goal is
to recover the full 4D attributes of the scene, capturing
both its 3D structure and temporal evolution. Specifically,
for any query frame Ii and an arbitrary target timestamp
τ ∈ {ti}Ni=1, we define a time-indexed 3D point map:

P ti→τ
i ∈ RH×W×3, (1)

which represents the 3D positions of points observed in
frame Ii as they appear at time τ . When τ = ti, P ti→τ

i

corresponds to the static 3D geometry of the frame. When
τ ̸= ti, it describes the dynamic time-dependent point maps
of the scene by mapping the points from the source frame
to their locations at the target time.

Factorized 4D Attributes. Directly predicting point maps
P ti→τ
i for all possible (i, τ) pairs is redundant and in-

tractable. Once the underlying 3D geometry at the source
time is known, the geometry at other times can be expressed
through relative motion. We therefore adopt a factorized
representation:

P ti→τ
i = P ti

i +∆P ti→τ
i , (2)

where P ti
i denotes the base 3D geometry at time ti, and

∆P ti→τ
i represents the 3D displacement from time ti to τ .

This formulation offers both conceptual and practical advan-
tages. The base geometry P ti

i is reconstructed from image
Ii under the perspective camera model, a property that al-
lows us to directly leverage recent advances of effective ge-
ometry representation in monocular 3D reconstruction (Lin
et al., 2025). Meanwhile, the displacement field ∆P ti→τ

i

explicitly captures temporal motion. This provides clear
motion cues that are useful for downstream applications,
while avoiding the need to re-predict complex geometry
at every time step. As a result, the representation remains
temporally consistent, especially in static regions and under
rigid motion. Unless otherwise stated, all point maps are
viewpoint-invariant and expressed in a world coordinate
system defined by the camera of the first frame (Wang et al.,
2024b; 2025b;a; Lin et al., 2025).

Relation with Other Work. The key distinction between
4RC and several prior or concurrent approaches lies in
the flexibility and completeness of our 4D output. Recent
feed-forward 3D reconstruction methods focus solely on
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Figure 2. Overall architecture of 4RC. Video frames are patchified and augmented with camera and time tokens, then jointly encoded
by a single transformer into a compact 4D latent representation F , from which a conditional decoder with disentangled geometry and
motion heads enables flexible querying of 3D geometry and motion for arbitrary source views at arbitrary target timestamps.

predicting the base 3D geometry for each input frame, i.e.,
P ti
i , and thus fail to capture the motion within the scene.

Traditional 3D point tracking methods, on the other hand,
estimate sparse trajectories initialized from selected points
and therefore cannot recover dense 4D geometry. Concur-
rent feed-forward 4D reconstruction methods also exhibit
limitations in motion modeling. St4RTrack is restricted to
pairwise motion. TraceAnything models trajectory fields us-
ing Bézier curves, which limits its ability to capture accurate
geometry and complex motion. Any4D predicts motion only
relative to the first frame, i.e., P t1→τ

1 with τ ∈ {ti}Ni=1, and
therefore cannot support motion queries from other source
frames. V-DPM regresses the point map P ti→τ

i for all
source frames i ∈ {1, . . . , N} at a given target timestamp τ ,
by attending to all frames jointly, which incurs substantial
computational overhead and limits inference flexibility. In
contrast, 4RC enables flexibly querying dense 3D motion
from any single source frame to any target timestamp within
a unified and fully feed-forward framework.

3.2. 4D Representation Encoder

The encoder E processes the input video V to produce a
unified 4D representation:

F = E(V). (3)

We adopt a plain ViT-based transformer architecture that
alternates between frame-wise self-attention and global self-
attention. Similar to the camera token in VGGT (Wang et al.,
2025a), which primarily encodes camera geometry informa-
tion for subsequent decoding, we further append each view’s
patchified tokens with a dedicated time token Ti. This time
token aggregates temporal information for that view and
serves as a conditioning signal for target-time motion de-
coding, as described in Section 3.3. The encoder produces a
unified spatio-temporal latent representation F = {Fi}Ni=1.
Each Fi = {Ẑi,j}Mj=1 ∪ { Ĉi} ∪ {T̂i} consists of M patch

tokens Ẑi,j ∈ RD corresponding to the i-th frame, together
with an encoded camera token Ĉi and a time token T̂i. We
treat F as an ordered sequence of frame-level token sets.

3.3. Conditional 4D Decoder

Geometry Head. To recover the base geometry for each
input frame, we use a geometry decoder Dg. Given the en-
coded spatial tokens Ẑi and camera tokens Ĉi, the geometry
decoder predicts per-frame depth and rays, together with
camera parameters:(

D̂i, R̂i, θ̂i

)
= Dg

(
Ẑi, Ĉi

)
, (4)

where D̂i ∈ RH×W is the depth map, R̂i ∈ R 1
2H× 1

2W×6

is the ray map, and θ̂i denotes the camera parameters (i.e.,
field of view, rotation, and translation). The base point map
P ti
i is then obtained from (D̂i, R̂i, θi) under the perspective

camera model. The geometry decoder Dg follows a dual-
DPT (Ranftl et al., 2021; Lin et al., 2025) design with a
lightweight camera head.

Motion Head. To recover motion for any query frame Iq
at a target timestamp τ , we use a lightweight transformer-
based motion decoder Dm with K layers of alternating
self-attention and cross-attention. We initialize the query
tokens Ẑq from the encoder output F . The decoder outputs
a dense 3D displacement field:

∆P̂ tq→τ
q = Dm

(
Ẑq, T̂τ , Ẑτ

)
. (5)

Specifically, to condition on the target time, we inject
time embedding T̂τ via Adaptive Layer Normalization
(AdaLN) (Perez et al., 2018) in the self-attention blocks,
and then apply cross-attention to the target spatial token set
Ẑτ . This design supports dense motion estimation and point
tracking while remaining compatible with our per-frame
geometry decoding.
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3.4. Training Scheme

We train 4RC in an end-to-end manner with joint supervi-
sion over geometry and motion attributes. Following prior
works (Wang et al., 2025a; Lin et al., 2025), we normalize
the ground-truth scene scale such that the average Euclidean
distance of all valid 3D points to the origin is 1. The overall
training objective is defined as:

L = Ldepth + Lray + Lcam + Lmotion. (6)

For all loss terms except the camera parameter loss Lcam,
we adopt an aleatoric uncertainty formulation (Wang et al.,
2024b). We denote the loss function as ℓ(ŷ,y,Σ), where Σ
represents the predicted pixel-wise uncertainty map, which
adaptively down-weights unreliable regions during training.

To better supervise both geometry and motion, we apply
gradient-based constraints (Lin et al., 2025) in the spatial
and temporal domains separately. For geometry learning,
we enforce spatial smoothness on the predicted depth maps
D̂ = {D̂i} by applying image-space gradients ∇x. The
depth loss is formulated as:

Ldepth = ℓ(D̂,D,ΣD) + ℓ(∇xD̂,∇xD,ΣD). (7)

Similarly, the motion loss supervises the displacement field
∆P, but we incorporate an additional temporal gradient
term ∇t that constrains the first-order temporal derivative
of the displacement (i.e., velocity) to encourage temporally
consistent motion behavior:

Lmotion = ℓ(∆P̂,∆P,ΣM )

+ℓ(∇t∆P̂,∇t∆P,ΣM ).
(8)

4. Experiments
We conduct extensive experiments to evaluate the effec-
tiveness of 4RC on standard 4D reconstruction tasks. We
compare against established state-of-the-art methods as well
as concurrent work for completeness, and further perform
ablation studies to analyze the contribution of key design
components in our framework.

4.1. Training Setup

Datasets. We train 4RC on a diverse collection of large-
scale public datasets, covering both dynamic and static
scenes, as well as synthetic and real-world videos. Specifi-
cally, our training data includes PointOdyssey (Zheng et al.,
2023), Dynamic Replica (Karaev et al., 2023b), Kubric (Gr-
eff et al., 2022), Waymo (Sun et al., 2020), DL3DV (Ling
et al., 2024), ScanNet++ (Yeshwanth et al., 2023), and MVS-
Synth (Huang et al., 2018). These datasets jointly provide
rich supervision for geometry, motion, and camera poses

under varied scene layouts and motion patterns. Detailed
dataset statistics are provided in the appendix.

Implementation Details. Our encoder adopts a single Vi-
sion Transformer based on DINOv2 (Oquab et al., 2023).
The motion decoder is lightweight, consisting of K = 4
layers of self-attention and cross-attention. We initialize
both the encoder and the geometry decoder with pretrained
weights from DA3 (Lin et al., 2025), which is trained on
large-scale 3D data and provides strong geometric priors.
During training, input images are resized to a randomly sam-
pled resolution, with the longer side up to 504 pixels. The
aspect ratio is uniformly sampled from [0.5, 2.0] to improve
generalizability. The training sequence length N is ran-
domly sampled from [2, 18] views, with longer sequences
facilitating larger and more complex motions. To avoid the
quadratic cost of computing all N2 motion pairs, we ran-
domly sample one query view per iteration and predict its
motion in N different timesteps during training. Standard
data augmentations including color jittering and Gaussian
blur are applied. The model is trained end-to-end using the
training loss described in Section 3.4. We use the AdamW
optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019)
for 50 epochs with a cosine learning rate schedule. Training
is performed on 16 A100 GPUs with a batch size of 1 per
GPU. Additional implementation details and hyperparame-
ters are provided in the appendix.

4.2. 4D Reconstruction

Qualitative Results. Figure 3 provides qualitative compar-
isons of 4RC in modeling 3D tracking. These visual results
demonstrate the effectiveness of our method in handling
complex motion patterns, such as occlusions, non-rigid mo-
tion, and large movements. We further evaluate our method
on diverse in-the-wild videos in Figure 4, demonstrating its
strong performance on both static and dynamic scenes.

Dense Tracking. To demonstrate the capability of our
method to track dense motion from arbitrary query views,
we first quantitatively evaluate dense 3D tracking by sam-
pling 24 frames from the Kubric and Waymo test sets, with
50 samples each, using the middle view (i.e., the 11th frame)
as the query. Traditional point tracking methods fail on
dense tracking due to out-of-memory issues, while Any4D
can only predict the motion field for the first view. We re-
port both the Average Percentage of Points (APD) within a
threshold and the End-Point Error (EPE) after global Sim(3)
alignment with RANSAC. As shown in Table 1(a), 4RC
achieves state-of-the-art performance among concurrent 4D
reconstruction methods on both datasets. On the challenging
Waymo dataset, which contains highly dynamic scenes, our
method substantially outperforms the concurrent method V-
DPM, resulting in a 36% gain in APD. Notably, our method
uses flexible per-frame decoding, in contrast to V-DPM’s
computationally expensive global aggregation decoding.
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Figure 3. Qualitative comparison of dynamic tracking on DAVIS (Perazzi et al., 2016). We visualize the dynamic reconstruction
results, including the geometry at the first and last frames, as well as the dynamic object trajectories rendered as rainbow-colored paths
from the first view. As shown in the top example, our method successfully handles occlusion when the motorcycle becomes temporarily
invisible. In contrast, the two-view method St4RTrack lacks global temporal context and therefore predicts an incorrect trajectory. In the
second and third examples, our method accurately reconstructs complex and large-scale motions while preserving high-quality geometry,
while other methods produce inconsistent motion trajectories and degraded geometry.

Table 1. 4D reconstruction evaluation on tracking. We evaluate our method on dense-view tracking (a), as well as sparse-view
tracking (b) on dynamic datasets. Our method demonstrates state-of-the-art capability in dense tracking from arbitrary views compared to
concurrent 4D reconstruction methods, and also achieves strong performance on the sparse point tracking setting, even when compared to
tracking-specific methods. The top-2 results are highlighted as best and second .

Method
(a) Dense Tracking (b) Sparse Point Tracking

Kubric Waymo PO DR ADT PStudio

APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓

VGGT + CoTracker3 (Karaev et al., 2024) - - - - 63.19 0.5890 80.93 0.2417 77.81 0.3015 78.11 0.2715
SpatialTrackerV2 (Xiao et al., 2025) - - - - 73.66 0.3944 80.87 0.2218 95.48 0.0594 85.63 0.1583
St4RTrack (Feng et al., 2025) 50.65 3.938 19.98 6.359 71.64 0.3101 78.36 0.2367 82.79 0.2279 74.05 0.2537
TraceAnything (Liu et al., 2025) 59.98 1.808 21.25 4.313 52.02 0.9154 68.28 0.5060 82.77 0.1998 74.15 0.2926
Any4D (Karhade et al., 2025) - - - - 71.47 0.3642 81.28 0.2171 73.83 0.3114 78.76 0.2088
V-DPM (Sucar et al., 2026) 71.12 2.849 41.44 1.948 83.36 0.1955 83.04 0.1901 80.80 0.2357 89.59 0.1165

4RC (Ours) 85.44 1.022 56.63 1.611 85.86 0.2498 88.65 0.1484 87.82 0.1480 87.32 0.1304

Sparse Point Tracking. We then evaluate 4RC on 3D
sparse point tracking, which measures sparse motion rela-
tive to the first frame, although our method can fully capture
dense motion. Following the WorldTrack benchmark (Feng
et al., 2025), tracking performance is assessed in the world
coordinate system. The benchmark includes two datasets,
Aerial Digital Twin (ADT) (Pan et al., 2023) and Panoptic
Studio (PS) (Joo et al., 2019) from TAPVid-3D (Zhang et al.,
2025a), as well as two test sets derived from PointOdyssey

(PO) and Dynamic Replica (DR). We compare our method
against tracking-specific methods Cotracker3 (Karaev et al.,
2024) and SpatialTrackerV2 (Xiao et al., 2025), along with
concurrent 4D reconstruction methods. The predicted tra-
jectory is aligned to the ground truth using a global Sim(3)
transformation via RANSAC. As shown in Table 1(b), 4RC
achieves strong performance even when compared with
methods specifically designed for point tracking, outper-
forming SpatialTrackerV2 on 3 out of 4 datasets.
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Table 2. Camera pose estimation and multi-View 3D reconstruction evaluation. We compare our method with both 3D reconstruction
approaches and concurrent 4D reconstruction methods. Our approach achieves state-of-the-art performance among 4D methods, while
remaining competitive with 3D reconstruction methods Pi3, without exclusive training on large-scale reconstruction datasets.

Method
(a) Camera Pose Estimation (b) Multi-View 3D Reconstruction

TUM-dynamics ScanNet 7-Scenes NRGBD

ATE ↓ RPEt ↓ RPEr ↓ ATE ↓ RPEt ↓ RPEr ↓ Acc ↓ Comp ↓ NC ↑ Acc ↓ Comp ↓ NC ↑

DUSt3R (Wang et al., 2024b) 0.083 0.017 3.567 0.081 0.028 0.784 0.146 0.181 0.736 0.144 0.154 0.870
MASt3R (Leroy et al., 2024) 0.038 0.012 0.448 0.078 0.020 0.475 0.185 0.180 0.701 0.085 0.063 0.794
MonST3R (Zhang et al., 2025c) 0.098 0.019 0.935 0.077 0.018 0.529 0.248 0.266 0.672 0.272 0.287 0.758
Spann3R (Wang & Agapito, 2024) 0.056 0.021 0.591 0.096 0.023 0.661 0.298 0.205 0.650 0.416 0.417 0.684
CUT3R (Wang et al., 2025b) 0.046 0.015 0.473 0.099 0.022 0.600 0.126 0.154 0.727 0.099 0.076 0.837
VGGT (Wang et al., 2025a) 0.012 0.010 0.311 0.036 0.015 0.376 0.087 0.091 0.787 0.073 0.077 0.910
Pi3 (Wang et al., 2025d) 0.014 0.009 0.309 0.031 0.013 0.346 0.044 0.063 0.758 0.022 0.025 0.911
St4RTrack (Feng et al., 2025) - - - - - - 0.240 0.234 0.681 0.241 0.219 0.754
TraceAnything (Liu et al., 2025) - - - - - - 0.232 0.359 0.584 0.347 0.527 0.643
Any4D (Karhade et al., 2025) 0.030 0.023 0.463 0.074 0.035 1.076 0.141 0.177 0.738 0.081 0.072 0.847
V-DPM (Sucar et al., 2026) 0.014 0.010 0.318 0.035 0.014 0.410 0.097 0.124 0.772 0.056 0.060 0.897

4RC (Ours) 0.010 0.008 0.314 0.032 0.012 0.437 0.034 0.051 0.783 0.036 0.034 0.912

…

…

…

…

…

…

…

…

…

Figure 4. Visualization of in-the-wild examples. 4RC demon-
strates accurate geometry reconstruction and motion modeling in
both static and dynamic scenes.

4.3. 3D Reconstruction

Camera Pose Estimation. We evaluate camera pose
estimation on the Sintel (Butler et al., 2012), TUM-
dynamics (Sturm et al., 2012), and ScanNet (Dai et al.,
2017) datasets. Performance is measured using Absolute
Trajectory Error (ATE), Relative Translation Error (RPEt),
and Relative Rotation Error (RPEr), all computed after
global Sim(3) alignment with the ground truth, following
established protocols (Teed & Deng, 2021; Zhang et al.,
2025c; Wang et al., 2025b). Table 2 (a) shows that 4RC
achieves top-tier camera pose estimation and reconstruction
quality within a single unified model. On the challenging
TUM-dynamics dataset, 4RC attains the best ATE and RPEt
among all methods, including specialized 3D reconstruc-
tion methods such as Pi3, which are trained on much larger
datasets. This demonstrates that our unified 4D representa-
tion is effective for both motion modeling and producing ac-
curate camera trajectories. Notably, 4RC achieves the best
performance among concurrent feed-forward 4D reconstruc-
tion methods. We exclude St4RTrack and TraceAnything as

Table 3. Depth estimation on the Bonn and Sintel datasets. We
compare methods that explicitly predict video depth.

Method
Bonn Sintel

Rel ↓ δ < 1.25 ↑ Rel ↓ δ < 1.25 ↑

DUSt3R (Wang et al., 2024b) 0.155 83.3 0.656 45.2
MASt3R (Leroy et al., 2024) 0.252 70.1 0.641 43.9
MonST3R (Zhang et al., 2025c) 0.067 96.3 0.378 55.8
Spann3R (Wang & Agapito, 2024) 0.144 81.3 0.622 42.6
CUT3R (Wang et al., 2025b) 0.078 93.7 0.421 47.9
Fast3R (Yang et al., 2025) 0.193 77.5 0.653 44.9
VGGT (Wang et al., 2025a) 0.055 97.1 0.297 68.8
Pi3 (Wang et al., 2025d) 0.050 97.4 0.246 67.7

4RC (Ours) 0.051 97.4 0.311 62.2

they do not explicitly estimate camera poses.

Multi-View Reconstruction. Following prior work (Wang
& Agapito, 2024; Wang et al., 2025b; 2024b), we eval-
uate scene-level multi-view 3D reconstruction on the 7-
Scenes (Shotton et al., 2013) and NRGBD (Azinović et al.,
2022) datasets. Reconstruction quality is measured using
Accuracy (Acc), Completeness (Comp), and Normal Consis-
tency (NC). Quantitative results are reported in Table 2 (b).
4RC achieves the best performance among 4D reconstruc-
tion methods, attaining the highest Acc/Comp on 7-Scenes
and the best NC on NRGBD. This highlights the effec-
tiveness of our proposed design. For example, we obtain
0.034 accuracy on 7-Scenes, far better than TraceAnything’s
0.240; the latter jointly models geometry and motion in a
trajectory field, which often compromises geometric quality.

Depth Estimation. We also evaluate video depth estima-
tion on Sintel (Butler et al., 2012) and Bonn (Palazzolo
et al., 2019) datasets. Following prior work (Wang et al.,
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Table 4. Ablation of our motion head design and factorized
motion. In (a), we evaluate the effectiveness of our motion head
design by removing each component. (b) shows that representing
the motion output in a factorized form performs better than directly
predicting the point cloud.

Methods
Kubric Waymo

APD ↑ EPE ↓ APD ↑ EPE ↓

4RC (Ours) 85.44 1.022 56.63 1.611

(a) Motion Head Design

(i) w/o Cross Attn. 80.83 1.136 54.19 1.618
(ii) w/o Self Attn. 80.57 1.127 53.50 1.686
(iii) w/o AdaLN 82.51 1.105 56.11 1.689

(b) Factorized Motion

(i) Points (World) 74.64 1.412 37.08 2.359
(ii) Points (Local) 70.70 1.547 19.55 3.226

2025b), predicted depth maps are aligned to the ground
truth using a per-sequence scale factor. While most existing
4D reconstruction methods do not explicitly output depth
and therefore cannot be directly evaluated on depth bench-
marks, 4RC includes an explicit depth prediction as part
of its factorized 4D representation. On the Bonn dataset,
4RC achieves the best δ < 1.25 score and matches the
second-best Rel. On Sintel, there is a small gap compared to
specialized 3D reconstruction methods such as Pi3, which
are trained exclusively on large-scale 3D datasets that are
more than twice the size of our training datasets.

4.4. Ablation Studies

We conduct ablation studies to evaluate the key design
choices in 4RC, focusing on the motion head and the fac-
torized motion representation.

Motion Head Design. Our motion head enables motion
querying from arbitrary input views at arbitrary target times-
tamps. To analyze the contribution of each component in the
motion head, we construct several variants by removing in-
dividual modules: (i) cross-attention between query tokens
and target-time latent features, (ii) self-attention, and (iii)
time-token conditioned AdaLN. All variants use the same
number of layers and have comparable parameter sizes. As
shown in Table 4 (a), removing any component consistently
degrades performance, indicating that all modules are neces-
sary for effective motion decoding. Among them, removing
either attention module results in the largest performance
drop. In Figure 5, we also quantitatively observe that with-
out cross-attention, the decoder struggles to model complex
non-rigid motions, such as hand and leg movements, pro-
ducing over-smoothed trajectories that do not align with the
true motion. This suggests that self-attention and adaptive
normalization alone are insufficient for handling large and
detailed temporal displacements, and direct access to target-
time features is critical for accurate motion estimation.

…

…

w/o Cross Attn.Input Video w/ Cross Attn.

Motion as World Pts. Motion as DisplacementMotion as Local Pts.

Figure 5. Qualitative ablation visualizations. The first row shows
the effectiveness of cross-attention in the motion head: without it,
although the model outputs rough trajectories, it fails to capture
fine details such as the motion of the girl’s legs and hands when she
is at the peak of a jump. The second row illustrates that outputting
motion as point clouds can lead to inconsistent trajectories as it
requires re-predicting base geometry for each time step.

Factorized Motion. We further evaluate the effectiveness
of our factorized motion representation by comparing it
with alternative output parameterizations commonly used
in 3D reconstruction (Wang et al., 2025a;d). Specifically,
we replace our displacement-based formulation with two
point-based variants: directly predicting 3D coordinates in
(i) a shared world coordinate system, or (ii) each view’s
own camera coordinate system. As reported in Table 4 (b),
both point-based variants perform worse than our factor-
ized representation. This performance gap arises mainly
from differences in representation. Direct point prediction
entangles geometry and motion in a single output space,
forcing the network to jointly learn shape and temporal
correspondences, which significantly increases learning dif-
ficulty. Qualitative results in Figure 5 further support this
observation. Our formulation explicitly decouples static
geometry from time-dependent motion via displacement
fields, reducing unnecessary recomputation of geometry
and improving temporal consistency.

5. Conclusion
We present 4RC, a unified feed-forward transformer frame-
work for 4D reconstruction from monocular videos. Central
to our approach is a novel encode-once, query-anywhere and
anytime paradigm, in which a compact 4D representation of
the entire video is learned once and subsequently queried
to recover geometry and motion at arbitrary time instances.
This paradigm effectively bridges the global spatio-temporal
modeling with flexible, on-demand query-based reconstruc-
tion, achieving both accurate 4D reconstruction and high
efficiency. Extensive experiments demonstrate that 4RC
consistently outperforms prior methods across a wide range
of challenging 4D reconstruction benchmarks. Looking
ahead, unified models such as 4RC, which jointly reason
about geometry and motion, represent a promising direction
toward more general-purpose perceptual systems.
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Impact Statement
This paper presents work whose goal is to advance the field
of machine learning, with a particular focus on 4D recon-
struction. The proposed approach has the potential to ben-
efit applications in robotics, augmented/virtual reality, and
content creation. While the method may have many poten-
tial societal consequences, none of which we feel must be
specifically highlighted here.
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Appendix

A. Additional Implementation Details
A.1. Architecture Details

We adopt the ViT-Giant (ViT-G) architecture from DINOv2 (Oquab et al., 2023) as our encoder, which consists of 40
transformer layers with a feature dimension of 1,536 and employs 24 attention heads. The encoder weight is initialized from
Depth Anything 3 (DA3) (Lin et al., 2025). For the geometry head, we follow a dual-DPT (Ranftl et al., 2021; Lin et al.,
2025) design equipped with a lightweight MLP as the camera head. For the motion head, we employ a transformer-based
decoder consisting of 4 layers of alternating self- and cross-attention with a hidden dimension of 1,536 and 16 attention
heads. To generate high-resolution dense motion outputs, we leverage a DPT (Ranftl et al., 2021) upsampling strategy where
we extract the feature tokens from the 19-th, 27-th, 33-rd, and 39-th blocks of the encoder. We therefore apply the motion
head to these layers, concatenate the resulting outputs, and fuse them through the DPT head to regress the final dense motion
displacement field.

A.2. Dataset Details

We train 4RC on 7 datasets covering both dynamic and static environments. Table 5 details the statistics and sampling
ratio of each dataset during training. For 3D motion learning, we leverage four dynamic datasets with ground-truth motion:
PointOdyssey (Zheng et al., 2023), Dynamic Replica (Karaev et al., 2023b), Waymo (Sun et al., 2020), and Kubric (Greff
et al., 2022). The motion supervision in these datasets varies from dense motion to sparse trajectories. Specifically for
Kubric, we curate two subsets: 4,000 clips from the MOVi-F release (24 frames each) with dense motion annotations,
and 6,000 clips from the CoTracker3 (Karaev et al., 2024) rendered training set (120 frames each) with sparse trajectory
annotations. To ensure high-quality geometric reconstruction on static backgrounds, we additionally include three static
datasets: DL3DV (Ling et al., 2024), ScanNet++ (Yeshwanth et al., 2023), and MVS-Synth (Huang et al., 2018).

Table 5. Training dataset statistics. We train 4RC on a mixture of 7 datasets. The motion annotation varies between dense maps and
sparse trajectories depending on the dataset source. Static datasets naturally provide motion annotations, i.e., zero movement.

Index Dataset Scene Type Real / Synthetic Dynamic / Static Motion Annotation Sampling (%)

1 PointOdyssey (Zheng et al., 2023) Mixed Synthetic Dynamic Sparse 22.12
2 Dynamic Replica (Karaev et al., 2023b) Mixed Synthetic Dynamic Sparse 29.20
3 Waymo (Sun et al., 2020) Outdoor Real Dynamic Dense 4.42
4 Kubric (Greff et al., 2022) Object Synthetic Dynamic Dense & Sparse 26.55
5 DL3DV (Ling et al., 2024) Mixed Real Static Dense 8.85
6 ScanNet++ (Yeshwanth et al., 2023) Indoor Real Static Dense 3.54
7 MVS-Synth (Huang et al., 2018) Outdoor Synthetic Static Dense 5.31

A.3. Training Details

During training, we apply standard data augmentations, including Gaussian blur (p = 0.2), ColorJitter (p = 0.1), and
RandomGrayscale (p = 0.05). Video frames are sampled in strict temporal order with a random interval ranging from 1 to 5
frames. For motion supervision, we adopt a probabilistic sampling strategy. Specifically, in 20% of the training iterations,
we supervise the model using all available motion ground truth. In the remaining 80%, we employ sparse supervision by
retaining only the top 20–30% of points with the largest displacement magnitudes. Empirically, we find that this strategy
filters out static or low-motion regions, prevents the dominance of zero-motion signals and accelerates convergence. For the
ray map loss Lray and the camera parameter loss Lcam in Equation 6, we adopt the loss formulation from DA3 (Lin et al.,
2025) for supervision.

B. Additional Experiments and Results
B.1. Streaming Version of 4RC

To support causal and online 4D reconstruction, we further introduce a streaming variant of 4RC (S-4RC) which builds
upon the STream3R (Lan et al., 2026) architecture. Specifically, we replace our encoder with the pretrained STream3R
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Figure 6. The visualization of S-4RC results. S-4RC can infer 3D geometry and motion in an online manner, which is beneficial for
downstream tasks such as robotic motion planning and egocentric understanding.

backbone, which enforces unidirectional causal attention. The model is then fine-tuned using the proposed 4RC training
objectives. Unlike standard 4RC, which processes the entire video in an offline manner, S-4RC operates sequentially and
achieves per-frame latency. We cache the 4D latent representation F for all processed frames. This enables flexible motion
queries from the current view to any past timestamp, as well as point tracking from past views to the current time. As shown
in Table 6 and Figure 6, S-4RC achieves competitive performance in 4D reconstruction while operating in an online manner,
without access to global temporal context. Note that S-4RC is trained for 20 epochs on 8 A100 GPUs.

Table 6. 4D reconstruction evaluation for S-4RC. S-4RC enables online and streaming 4D reconstruction and achieves competitive
performance compared to 4RC, even without access to global temporal context.

Method
Point Tracking Dense Tracking

PO DR ADT PStudio Kubric Waymo

APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓

S-4RC 73.29 0.3863 83.47 0.1970 86.12 0.1674 83.81 0.1795 75.60 1.168 46.02 1.971
4RC 85.86 0.2498 88.65 0.1484 87.82 0.1480 87.32 0.1304 85.44 1.022 56.63 1.611

B.2. Additional Quantitative Evaluation on 4D Reconstruction

As a complement to the evaluation in Table 1, following WorldTrack (Feng et al., 2025) and TAPVid-3D (Zhang et al.,
2025a), we apply global median scale alignment to match the predicted points with the ground truth. This alignment
is feasible since both the predictions and the ground-truth points are represented in a shared world coordinate system
defined by the camera of the first frame. We additionally include a staged pipeline baseline composed of Monst3R (Zhang
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et al., 2025c) and SpaTracker (Xiao et al., 2024). Comprehensive evaluations in Table 7 demonstrate that our method
outperforms approaches specifically designed for point tracking as well as concurrent 4D reconstruction methods, achieving
state-of-the-art results on 4 out of 6 datasets.

Table 7. 4D reconstruction evaluation on tracking under global median scale alignment. As a complement to Table 1, we further
evaluate our method on dense-view tracking (a) and sparse-view tracking (b) under global median scale alignment on dynamic datasets.
Our method maintains strong performance across both evaluation protocols.

Method
(a) Dense Tracking (b) Sparse Point Tracking

Kubric Waymo PO DR ADT PStudio

APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓ APD ↑ EPE ↓

VGGT + CoTracker3 (Karaev et al., 2024) - - - - 49.08 0.6532 74.73 0.2884 72.21 0.3548 66.28 0.3107
Monst3R + SpaTracker (Xiao et al., 2024) - - - - 47.65 0.5917 55.49 0.8823 51.95 0.5362 50.16 0.4837
SpaTrackerV2 (Xiao et al., 2025) - - - - 69.57 0.3780 73.43 0.2732 92.22 0.0915 74.16 0.2272
St4RTrack (Feng et al., 2025) 35.33 3.465 2.51 10.139 67.95 0.3140 73.74 0.2682 76.01 0.2680 69.67 0.2637
TraceAnything (Liu et al., 2025) 27.37 1.952 2.06 12.564 39.83 1.0593 60.63 0.5758 75.65 0.2511 71.33 0.2727
Any4D (Karhade et al., 2025) - - - - 60.86 0.4194 68.39 0.3012 56.71 0.4320 60.03 0.3344
V-DPM (Sucar et al., 2026) 52.22 3.131 31.67 1.957 79.79 0.1994 76.38 0.2378 66.06 0.3426 76.36 0.1957

4RC (Ours) 55.38 1.525 39.55 1.864 80.27 0.2681 82.91 0.1889 84.28 0.1766 69.04 0.2603

B.3. Additional Quantitative Evaluation on Depth Estimation

We additionally include the KITTI dataset (Geiger et al., 2013) and extend the video depth evaluation in the main paper.
We compare with a broader set of baselines, including single-frame depth methods Marigold (Ke et al., 2024) and
DepthAnything-V2 (Yang et al., 2024), video depth methods NVDS (Wang et al., 2023b), DepthCrafter (Hu et al., 2025),
and ChronoDepth (Shao et al., 2024), and joint depth-and-pose estimation approaches Robust-CVD (Bârsan et al., 2018) and
CausalSAM (Zhang et al., 2022). All results are aligned using per-sequence scale and shift, enabling a more comprehensive
and fair comparison for video depth evaluation. As shown in Table 8, our method significantly outperforms existing depth
estimation approaches and achieves competitive performance compared to the dynamic 3D reconstruction method Pi3 (Wang
et al., 2025d). Notably, our method is not trained on large-scale 3D reconstruction datasets and is able to model dynamic
object motion, rather than focusing solely on 3D reconstruction.

Table 8. Depth estimation on Bonn, Sintel, and KITTI datasets. We compare a series of methods that explicitly predict video depth
using per-sequence scale & shift alignment.

Method
Bonn Sintel KITTI

Rel ↓ δ < 1.25 ↑ Rel ↓ δ < 1.25 ↑ Rel ↓ δ < 1.25 ↑

Marigold (Ke et al., 2024) 0.091 93.1 0.532 51.5 0.149 79.6
Depth-Anything-V2 (Yang et al., 2024) 0.106 92.1 0.367 55.4 0.140 80.4
NVDS (Wang et al., 2023b) 0.167 76.6 0.408 48.3 0.253 58.8
ChronoDepth (Shao et al., 2024) 0.100 91.1 0.687 48.6 0.167 75.9
DepthCrafter (Hu et al., 2025) 0.075 97.1 0.292 69.7 0.110 88.1
Robust-CVD (Kopf et al., 2021) - - 0.703 47.8 - -
CasualSAM (Zhang et al., 2022) 0.169 73.7 0.387 54.7 0.246 62.2
DUSt3R-GA (Wang et al., 2024b) 0.156 83.1 0.531 51.2 0.135 81.8
MASt3R-GA (Leroy et al., 2024) 0.167 78.5 0.327 59.4 0.137 83.6
MonST3R-GA (Zhang et al., 2025c) 0.066 96.4 0.333 59.0 0.157 73.8
Spann3R (Wang & Agapito, 2024) 0.157 82.1 0.508 50.8 0.207 73.0
CUT3R (Wang et al., 2025b) 0.074 94.5 0.540 55.7 0.106 88.7
VGGT (Wang et al., 2025a) 0.049 97.2 0.202 72.7 0.057 96.6
Pi3 (Wang et al., 2025a) 0.044 97.5 0.229 73.2 0.038 98.4

4RC (Ours) 0.048 97.3 0.249 67.0 0.058 95.5
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Figure 7. Visualization using 4RC on in-the-wild videos of camera poses, static reconstruction, dynamic reconstruction, and 3D
tracking.

B.4. More Visualizations

We further provide additional visualizations of our 4RC results, including camera poses, static reconstruction, dynamic
reconstruction, and 3D tracking on in-the-wild videos in Figure 7.

B.5. Video Demo

We also provide a demo video on our project page to showcase the qualitative 4D reconstruction results of 4RC and S-4RC.

C. Limitations
While our method achieves unified and flexible feed-forward 4D reconstruction and shows stronger performance than
concurrent 4D reconstruction methods, several limitations remain. First, our approach struggles in scenarios where geometric
recovery is inherently difficult. These include regions with extreme depth (e.g., distant clouds), transparent objects, or
floating artifacts where the base geometry lacks sharp depth boundaries. We expect that improved depth estimation
methods (Xu et al., 2025) and future advances in 3D reconstruction will help alleviate these issues. Second, we observe
performance degradation in scenes with extreme or highly chaotic motion. This limitation mainly arises from the diversity
of motion annotation in existing datasets, which provide insufficient supervision for such complex dynamics. Future work
will explore scaling up training data to cover a broader range of motion patterns and kinematic diversity.
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